Bochner-Weitzenböck formulas and curvature actions on Riemannian manifolds

نویسنده

  • Yasushi Homma
چکیده

Gradients are natural first order differential operators depending on Riemannian metrics. The principal symbols of them are related to the enveloping algebra and higher Casimir elements. We give certain relations in the enveloping algebra, which induce not only identities for higher Casimir elements but also all Bochner-Weitzenböck formulas for gradients. As applications, we give some vanishing theorems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Weitzenböck Formulas on Poisson Probability Spaces

This paper surveys and compares some recent approaches to stochastic infinite-dimensional geometry on the space Γ of configurations (i. e. locally finite subsets) of a Riemannian manifold M under Poisson measures. In particular, different approaches to Bochner– Weitzenböck formulas are considered. A unitary transform is also introduced by mapping functions of n configuration points to their mul...

متن کامل

Théorème de Bochner et feuilletage minimal

The starting point of this work is the Bochner theorem on harmonics 1-forms stated at 1946. We show that many results on minimal foliations of codimension one and two on compact pseudo-Riemannian manifolds are at the origin of this theorem. We also prove the non existence of minimal Riemannian foliations of codimension one defined by a 1-form with finite global norm on complete non compact Riem...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003